West Bengal State Council of Technical & Vocational Education and Skill Development (Technical Education Division)

Syllabus of

Diploma in Medical Laboratory Technology [MLT]

Part-III (5th Semester)

Revised 2022

(Technical Education Division)

Curriculum Structure for Part-III, (3rd Year) of the Full Time Diploma in MLT

Program: Medical Laboratory Technology **Program Level:** Diploma in Engineering & Technology

Program Code: MLT Duration: 3 Years

		SEMI	ESTE	2 R –	5th								
Sr			t	Co	ntact	t	Ev	valuatio	on / Asse	essmen	t Sche	eme	Full
Ν	Course Code	Course Name	Credit	Hr.	/We	ek		Int	ernal		Ex	Ma	
0			Ö	L	Т	Р	CA	TA	MST	Р	Р	ESE	rks
		Theoretical											
1	MLTPC512	Clinical Microbiology &	3	3	-	-	10	10	20	-	-	60	100
		Parasitology											
2	MLTPC513	Medical Imaging	2	2	-	-	10	10	20	-	-	60	100
3	MLTPC514	Advanced Bio-Medical Engineering	3	2	1	-	10	10	20	-	-	60	100
4	MLTPC515	Microprocessor & Microcontroller	3	2	1	-	10	10	20	-	-	60	100
5	MLTPE52#	Elective-II:	2	2	-	-	10	10	20	-	-	60	100
6	MLTPE53#	Elective-III:	2	2	-	-	10	10	20	-	-	60	100
		Sessional											
7	MLTPC512P	Clinical Microbiology &	1		-	2	-	-	-	60	40	-	100
		Parasitology Lab											
8	MLTPC513P	Medical Imaging Lab	1		-	2	-	-	-	60	40	-	100
9	MLTPC514P	Advanced Bio-Medical	1		-	2	-	-	-	60	40	-	100
		Engineering Lab											
10	MLTPC515P	Microprocessor & Microcontroller	1		-	2	-	-	-	60	40	-	100
		Lab											
11	*PR502	Major Project	-		-	2	-	-	-	-	-	-	-
12	*I502	Internship-II	1	-	-	-	-	-	-	60	40	-	100
		TOTAL:	20										

		SEM	ESTE	R –	6th								
Sr			t	🛨 Contact		Evaluation / Assessment Scheme						Full	
Ν	Course Code	Course Name	Credit	Hr	/We	ek		Inte	ernal		Ex	ternal	Ma
0			U	L	Т	Р	CA	TA	MST	Р	Р	ESE	rks
		Theoretical											
1	MLTPC616	Installation & Maintenance of Medical Equipment	3	2	1	-	10	10	20	-	-	60	100
2	MLTPE64#	Elective-IV:	2	2	1	-	10	10	20	-	-	60	100
3	*OE611	Open Elective-I:	3	3	-	-	10	10	20	-	-	60	100
4	*OE62#	Open Elective-II :	3	3	-	-	10	10	20	-	-	60	100
5	*HS604	Entrepreneurship and Start-ups	4	3	1	-	10	10	20	-	-	60	100
		Sessional											
6	MLTPC616P	Installation & Maintenance of Medical Equipment Lab.	1	-	-	2	-	-	-	60	40	-	100
7	*PR603	Major Project	4		-	6	-	-	-	60	40	-	100
8	*SE601	Seminar	1	-	-	-	-	-	-	60	40	-	100
		TOTAL:	21										

Code System:

Program (i.e. MLT) _Course Category (i.e. PC) _Semester (i.e. 3/4/5/6) _ Course No (i.e. 01, 02, ...)

Program (i.e. MLT) _Course Category (i.e. PC) _Semester (i.e. 3/4/5/6) _ Course No (i.e. 01, 02, ...) _ P (for Practical)

(Technical Education Division)

		Program Elective (PE) Cour	rse					
Sr No	Course	Course Name	Semester	Credit		itact Week	Full	
	Code		Semester	Ü	L	Т	Р	Marks
1. F	Elective-I (Any	one course to be selected)	4 th	2	2	-	-	100
1.1	MLTPE411	Biomaterial						
1.2	MLTPE412	Tissue Engineering						
2.	Elective-II (An	y one course to be selected)	5 th	2	2	-	-	100
2.1	MLTPE521	Artificial Organs & Rehabilitation Engineering						
2.2	MLTPE522	Biotechnology						
3. E	Elective-III (An	y one course to be selected)	6 th	2	2	-	-	100
3.1	MLTPE631	Hospital Engineering & Management						
3.2	MLTPE632	Digital Image Processing						
4. E	Elective-IV (An	y one course to be selected)	6 th	2	2	-	-	100
4.1	MLTPE641	Power & Control System						
4.2	MLTPE642	Micro-Electro Mechanical System						
C. 1	System		1					

Code System:

Program (i.e. MLT) _Course Category (i.e. PE) _Semester (i.e. 4/5/6) _ Elective No (i.e. 1/2/3/4) _ Course No (i.e. 1, 2, ...)

		Open Elective (OE)	Course					
Sr No	Course	Course Name	Semester	Credit	Con Hr./	tact Week		Full
	Code			С	L	Т	Р	Marks
1	*OE61#	Open Elective-I	6 th	3	3	0	0	100
1.1	*OE611	Engineering Economics & Project Management						
2	*OE62#	Open Elective-II (Any one course to be selected)	6 th	3	3	0	0	100
2.1	*OE621	Environmental Engineering & Science						
2.2	*OE622	Artificial Intelligence						
2.3	*OE623	Industrial Management						

Code System:

Program (All i.e. *) _Course Category (i.e. OE) _Semester (6th) _Open Elective No (i.e. 1 or 2) _Course No (i.e. 1, 2, ...)

	Examination Scheme										
Course		Internal Assessment						External			
	MST	Quiz/	Pract	Attend	Viva-	Total	ESE	Assignment	Viva-	Total	Marks
		Assignment	ical	ance	Voce			/ Practical	Voce		
Theory	20	10	-	10	-	40	60	-	-	60	100
Sessional	-	-	30	10	20	60	-	20	20	40	100
Pass M	Pass Marks: Students have to obtain at least 40% marks (pass marks) in both Internal assessment										
				and I	Externa	l separat	tely.				

CA: Class Attendance

TA: Teacher's Assessment is based on Average Marks obtained in Assignments/ quiz/ Viva-Voce on each Unit.

MST: **Best of two** MST, if marks obtained >50% in both MST or **Average** if marks obtained < 50 % in one or both MST. ESE: End Semester Exam

I: Internship may be duration of 2-4 weeks at Hospital/Diagnostic Centre/Industry.

(Technical Education Division)

Syllabus of Clinical Microbiology & Parasitology

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Clinical Microbiology &	Course Code:	MLTPC 512
	Parasitology		
Course Category:	Theory; Program Core	Full Marks & Duration:	100; (15+2) Weeks
Credit:	3	Contact Hr./Week	L-3, T-0

Course Objective:

Sr. No	Course Objective
1	To acquire the basic knowledge of the bacteria, virus, parasites & helminthes
2	To be familiar with different culture media and their use.
3	To know different staining procedure
4	To know the microbiology test for diagnosis

Course Content:

Unit	Topic	Hrs.
1	General Bacteriology: Introduction to microbiology, bacteria, Morphology of bacteria,	7
	Classification of bacteria, bacterial anatomy, Structure of cell wall, Gram negative and gram	
	positive cell wall, difference between Gram negative and gram positive cell wall, spores.	
	Growth requirements - Nutritional, gas, moisture, accessory nutritional requirement,	
	Growth curve, factors influencing growth, Bacterial reproduction, Different Culture Media	
	for bacterial growth, culture techniques.	
2	Sterilization and disinfection: Introduction to sterilization, disinfection, antiseptic,	3
	bacteriocidal agents, bacteriostatic agents; Different methods of sterilization-Physical,	
	Chemical, dry heat, moist heat, Filtration, Radiation, Autoclave, types of autoclave,	
	Commonly employed sterilization method for different clinical article, Uses of	
	disinfectant; Infection, classification of infection, Source of infection in man, Method of	
3	transmission of infection, Pathogenecity and Virulence	5
5	General Virology: Morphology of virus – size, shape, structure, Reaction to physical and chemical agents, Viral Multiplication, classification of viruses, Overview of oncogenic	5
	viruses, DNA viruses, RNA Viruses	
4	Mycology: Fungi and yeasts, classification of Fungi, Superficial Mycosis,	4
-	Microsporum, Trichophyton, Epidermophytom, Subcutaneous Mycosis.	-
5	Parasitology: Introduction, Classification of parasite, host, Mechanism of disease	8
	production by parasites, classification of the pathogenic Protozoa, overview of Entamoeba	
	histolytica, Giardia lamblia, Leishmania donovani Malaria parasite, Balantidium coli, kala-	
	azar	
6	Helminthology: Habitat, morphology, lifecycle of Roundworm, Hookworm,	6
	Threadworm, Wuchereria Bancrofti Taenia saginata, Taenia Solium	
7	Diagnostic Microbiology: Specimen collection and handling, Containers, Transportation of	12
	specimen, Disposal of specimen after laboratory use, Microscopic Examination, Gram	
	staining, Acid-fast staining, albert staining, Sopre straining, Laboratory Culture - culture	
	media, preparation of culture media, pH adjustment of culture media, Making of culture	

(Technical Education Division)

plates, Drug Sensitivity test, Classification and identification of bacteria, collection of blood for culture, Laboratory diagnosis of Throat swab, Sputum Specimens, purulent exudates, Tuberculosis, Faecal specimen, Vibrio infections and cholera, Gonorrhea, Leprosy, Dengue, Flue, Covid-19						
Total Teaching Hrs. : (3 hrs. x 15 Weeks)	45					
Assessment : (3hrs. x 2 Weeks)						
Total: (3hrs. x 17 Weeks)	51					

Course Outcomes (COs):

COs	At end of the course, students would be able to
CO1	Explain the morphology, structure, classification and characteristics of bacteria, virus, fugi,
	parasites & helminthes.
CO2	Explain the sample collection, handling, transportation with maintaining sterility & asceptic
	measures in microbiology laboratory.
CO3	State the different culture and staining of bacteria & fungi
CO4	Demonstrate the different microbiological testing with interpretation.

End Semester Exam:

	End Semester Exam Scheme (Weightage 60 %, FM – 60):									
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time		
No				to be Set	be Answered	Marks	Marks	(Hrs.)		
A	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20			
В	Short Answer Type:	-	All	12	10	1 x 10	10			
С	Subjective Type:	C-1	1,2,3	3	Any Five taking at	6 x 5	30			
		C-2	4,5,6	3	least One from					
		C-3	7	3	each group					
	Total (A+B+C) :						60			

Reference Book:

Sr No	Book	Author	Publisher
1	Medical Microbiology	Satish Gupta	
2	Practical Microbiology Protozoology and	N C Dey, T K Dey	
	Parasitological		
3	Medical Microbiology	N C Dey, H L E Grueber, T K	
		Dey	
4	Medical Parasitology & clinical	S K Sarkar	
	Pathology		
5	Microbiology	Michael J Pelezar	
6	Medical Laboratory technology	K L Mukherjee	
7	Medical Laboratory technology	Sood	
8	Practical Pathology	P. Chakraborty & Gargi	
		Chakraborty	

(Technical Education Division)

Syllabus of Clinical Microbiology & Parasitology Lab

Course Introduction:

Program: Medical Laboratory Technology		Semester:	5 th
Course Title: Clinical Microbiology & Parasitology		Course Code:	MLTPC 512P
	Lab.		
Course Category:	Sessional; Program Core	Full Marks & Duration:	100; (15+2) Weeks
Credit:	1	Contact Hr./Week	T-0: P-2

Course Objective:

Sr. No	Course Objective
1	To be familiar with the clinical microbiology test for diagnosis of microbial infection
2	To hands on practice for sample collection & testing.
3	To prepare culture media and perform culture, staining
4	To perform laboratory test for clinical diagnosis of diseases.

Expt. No	Experiment	Hrs.		
1	Verification of working principle of autoclave, hot-air oven, bio-safety cabinet and			
	incubator.			
2	Swab sticks preparation & sterilization.			
3	Preparation culture media – nutrient broth, nutrient agar, blood agar, RCM, VTM			
4	Identification of bacteria by Gram's staining			
5	Collection of sputum & diagnosis of tuberculosis by AFB staining			
6	Collection of throat/nasal swab & diagnosis of diphtheria by Albert's staining.			
7	Bacterial spore staining.			
8	Urine culture & sensitivity for UTI			
9	Blood culture & sensitivity.			
10	Sputum/ Puss/stool culture & sensitivity			
11	11 Microscopic examination of stool for ova, parasites			
12	12 Laboratory diagnosis of Gonorrhea			
13	Laboratory diagnosis of Leprosy			
14	Laboratory diagnosis of Dengue			
15	Laboratory diagnosis of Flue			
16	Laboratory diagnosis of Covid-19			
	Total Teaching Hrs. : (2 hrs. x 15 Weeks)	30		
	Assessment : (2hrs. x 2 Weeks)	04		
	Total: (2hrs. x 17 Weeks)	34		

Course Outcomes (Cos):

COs	At end of the course, students would be able to
CO1	Develop skill for collection, preparation of blood for biochemical tests.
CO2	Perform bio-chemistry test for estimation of blood chemistry & urine chemistry.
CO3	Interpret the test result of Bio-chemistry test of blood & urine sample.
CO4	Demonstrate the experiment of bio-physic

----- X -----

Syllabus of Medical Imaging

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Medical Imaging	Course Code:	MLTPC 513
Course Category:	Theory; Program Core	Full Marks & Duration:	100 ; (15+2) Weeks
Credit:	2	Contact Hr./Week	L-2: T-0

Course Objective:

Sr. No	Course Objective	
1	To be familiar with the different medical imaging modalities.	
2	To acquire the basic knowledge of different medical imaging procedure.	
3	To know the basic working principle of medical imaging system.	
4	To know the Patient care during the above procedure	

Unit	Торіс	Hrs.
1	X-ray Imaging: Introduction to medical image, Different medical imaging modalities	9
	Radiography, Electromagnetic spectrum, Introduction to X-ray, Properties of X-ray,	
	Production of X-ray, Bremsstrahlung radiation, Characteristic radiation, Factor affecting X-ray	
	Intensity, Classification of X-ray, Principle of X-ray image, Latent image, X-ray film, dark	
	room processing, radiographic densities. Characteristic of X-ray film - film density, Speed,	
	Latitude, Image contrast, Application of X-ray image. Radiation hazards & safety,	
	Instrumentation of X-ray System: Different functional Parts of X-ray machine, Basic block	
	diagram of diagnostic X-ray machine. Working of X-ray machine with Circuit diagram.	
	Accessories- Grid, Cassette, Bucky, Automatic Film processor, Working principle of CR	
	system, Devices of CR System, Working of DR system	
2	Computed Tomography (CT): Limitation of Radiography, Tomography, Different	7
	tomographic modalities, Definition of CT, History of CT, Basic principle of CT, CT number,	
	Image reconstruction technique, Contrast medium enhancement, Generation of CT scan	
	system. Instrumentation of CT system: Working Principle of CT system, Different Parts -	

(Technical Education Division)

	Gantry, Patient table, work station. Spiral/ helical CT scanning, Interpolation. Radiation protection in CT.	
3	Ultrasonography: Introduction to ultrasound, Production of ultrasound, Definition of Ultrasonography, Acoustic Impedance or Characteristic Impedance of different tissues, echo, Interaction of ultrasound with tissue, Working principle of Ultrasonography- Piezoelectric effect & Pulse-echo principle. Different Modes of Ultrasonography- A, B & M modes, Working of Ultrasound machine with Block diagram. Different types of USG Probe, Introduction to Doppler Ultrasound, Color Doppler, Duplex Scanner, Overview of Echocardiography. Introduction to Obstetric Ultrasound Scanning.	8
4	MRI: Definition of MRI, Introduction to NMR, Working principle of MRI, precession, Larmor	5
	frequency, RF excitation, resonance, Relaxation – T1 & T2, Instrumentation of MRI system- Block diagram, Function of Magnet, super conductor, Shim coil, RF coil, Receiver coil, Gradient coil, Introduction to DICOM, PAC	
5	Introduction to Molecular Imaging: Overview of PET CT, SPECT	1
Total Teaching Hrs. : (2 hrs. x 15 Weeks)		
Assessment : (2 hrs. x 2 Weeks)		
	Total: (2 hrs. x 17 Weeks)	34

Course Outcomes (Cos):

COs	At end of the course, students would be able to	
CO1	State the principle of x-ray production, x-ray imaging, X-ray systems and Radiation hazards &	
	Safety.	
CO2	Explain working principle of CT scan, CT image formation & CT instrumentation.	
CO3	Describe principle of Ultrasound imaging, application of ultrasound and ultrasound system.	
CO4	Demonstrate the principle of MRI and MRI instrumentation.	

End Semester Exam:

	End Semester Exam Scheme (Weightage 60 %, FM – 60):							
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time
No				to be Set	be Answered	Marks	Marks	(Hrs.)
А	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20	
В	Short Answer Type:	-	All	12	10	1 x 10	10	
С	Subjective Type:	C-1	1	3	Any Five taking at	6 x 5	30	
		C-2	2	3	least One from			
		C-3	3,4,5	3	each group			
	Total (A+B+C) :						60	

Reference Book:

Sr No	Book	Author	Publisher
1	Diagnostic radiography	Bryan	
2	Text book of Radiology for Residents and Technician	Prof. Satish Kr. Bhargava	

(Technical Education Division)

3	Biomedical Instrumentation	R. S. Khandpur	
4	Medical Instrumentation application & design	John G. Webster	
5	A text book of Medical Instrument	Cromwell	
6	Medical Instrument	S. Ananthi	
7	Introduction to Biomedical instrumentation technology	Joseph J. Carr and John M. Brown	

Syllabus of Medical Imaging Lab.

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Medical Imaging Lab.	Course Code:	MLTPC 513P
Course Category:	Sessional; Program Core	Full Marks & Duration:	100 ; (15 + 2) Weeks
Credit:	1	Contact Hr./Week	T-0 : P-2

Course Objective:

Sr. No	Course Objective	
1	To identify parts of the different medical imaging instrument.	
2	Fo verify principle of medical imaging.	
3	Fo develop skill of radiography & it instrumentation.	
4	To demonstrate imaging procedure.	

Expt. No	Experiment/ Job	Hrs.	
1	Identification of different parts of diagnostic x-ray machine and accessories.		
2	Verification of working principle of Computed Radiography (CR) system.		
2	X-ray for chest		
3	X-ray for arms/wrist joint		
4	X-ray for KUV		
5	X-ray for skull		
6	Identification of different parts of CT system.		
7	Study of CT scan.		
8	8 Identification of different parts of ultrasound machine.		
9	USG for upper/lower /whole abdomen.		
10	Demonstration of echocardiography		
11	Identification of different parts of MRI instrumentation		
12	Demonstration of MRI.		
	Total Teaching Hrs. : (2 hrs. x 15 Weeks)	30	
	Assessment : (2hrs. x 2 Weeks)	04	
	Total: (2hrs. x 17 Weeks)	34	

Course Outcomes (COs):

COs	At end of the course, students would be able to	
CO1	Develop skill on CR system for radiography.	
CO2	Identify the parts of the CT system with their function	
CO3	Develop skill on USG system	
CO4	Demonstrate working principle of MRI and MRI instrumentation	

----- x -----

Syllabus of Advanced Biomedical Engineering

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Advanced Biomedical Engineering	Course Code:	MLTPC 514
Course Category:	Theory; Program Core	Full Marks & Duration:	100 ; (15+2) Weeks
Credit:	3	Contact Hr./Week	L-2: T-1

Course Objective:

Sr. No	Course Objective
1	Familiarization with Telemetry system and Lasers for medical applications
2	Imparting the Design concept of Bio-amplifiers, electronic filters and bio-signal processing
3	Familiarization with medical robotics and IoT & wearable devices in biomedical applications
4	Understand the computer applications in medical instruments

Course Content:

Unit	Торіс	Hrs.
1	Biotelemetry: Introduction to telemetry - Overview of Wire & Wireless telemetry system,	10
	Modulation, Demodulation, TDM, FDM Biotelemetry, need of Biotelemetry, Single channel	
	biotelemetry, multi-channel biotelemetry system	
2	LASER: Principle of operation of LASER, Overview of Nd-YAG, pulsed Ruby, CO ₂ , Lasers	9
	and their medical applications., Medical application of Thulium lasers & Femtosecond lasers	
3	Design of Bio-amplifier and bio-signal processing: Design of ECG amplifier, QRS detection,	9
	EMG amplifier, design concept of filters (LPF, HPF, BPF, Notch) Basic idea of bio-signal	
	processing – Block description and applications	
4	Introduction to Medical Robotics: Basic Concept-Classification, Advantages, Applications in	4
	medical domain	
5	Introduction to IoT and Wearable Devices: Basic characteristics of IoT and Wearable	3
	devices, Applications	
6	Application of Computer in Biomedical Engineering: Microcomputer in Medical	10
	Instrument, Overview of computer interfacing with the medical Instruments, Overview of HIS,	
	PAC, RIS, DICOM format & applications	
	Total Teaching Hrs. : (3 hrs. x 15 Weeks)	45
	Assessment : (3hrs. x 2 Weeks)	06
	Total: (3hrs. x 17 Weeks)	51

Course Outcomes (COs):

COs	At end of the course, students would be able to
CO1	Demonstrate biotelemetry & its applications
CO2	Identify the characteristics of different LASERs & their medical applications
CO3	Understand medical robotics, IoT & Wearable Devices in medical applications
CO4	Explain the application of computer & computer network-based systems in medical instrumentation
	systems

End Semester Exam:

	End Semester Exam Scheme (Weightage 60 %, FM – 60):							
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time
No				to be Set	be Answered	Marks	Marks	(Hrs.)
A	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20	
В	Short Answer Type:	-	All	12	10	1 x 10	10	
С	Subjective Type:	C-1	1, 2	3	Any Five taking at	6 x 5	30	
		C-2	3, 4	3	least One from			
		C-3	5,6	3	each group			
	Total (A+B+C) :						60	

Reference Book:

Sr No	Book	Author	Publisher
1	Handbook of Biomedical Instrumentation	R.S. Khandpur	McGraw Hill Education
2	Biomedical Instrumentation and Measurements	Cromwell	Pearson
3	Introduction to Biomedical Equipment	Carr and Brown	Wiley
	Technology		
4	Medical Instrumentation- Application and	John G. Webster	Wiley
	Design		
5	Fundamentals of IoT and Wearable Technology	Haider Raad	Wiley
	Design		
6	Control Theory in Biomedical Engineering	Olfa Boubaker	Academic Press
7	Medical Robotics	Jocelyne Troccaz	Wiley

-----X------X

Syllabus of Advanced Biomedical Engineering Lab.

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	4 th
Course Title:	Advanced Biomedical Engineering	Course Code:	MLTPC 514P
	Lab.		
Course Category:	Sessional; Program Core	Full Marks & Duration:	100 ; (15+2) Weeks
Credit:	1	Contact Hr./Week	T-0 : P-2
Course Objective:	·		•

Course Objective:

(Technical Education Division)

Sr. No	Course Objective	
1	To familiarize with the components of Biotelemetry system	
2	To design Bio-amplifier and active filters of bio-signals	
3	To familiarize with the human-computer interface and smart watch	
4	To familiarize with the medical robots and computer network based medical software application	
	modalities	

Course Content:

Expt. No	Experiment	Hrs.		
1	Study of Biotelemetry system			
2	Study of Bio-amplifier			
3	Study of active filter for bio-signal			
4	Interfacing of bio-signal with computer			
5	Study of smart watch			
6	Study of medical robot			
7	Study of HIS			
8	Study of PAC			
	Total Teaching Hrs. : (2 hrs. x 15 Weeks)	30		
	Assessment : (2hrs. x 2 Weeks)			
	Total: (2hrs. x 17 Weeks)	34		

Course Outcomes (COs):

COs	At end of the course, students would be able to		
CO1	Demonstrate the components & function of biotelemetry system		
CO2	Design Bio-amplifier and active filters of bio-signals		
CO3	Demonstrate the human-computer interface system and smart watch		
CO4	Demonstrate the medical robots and computer network based medical software application		
	modalities		

----- X -----

Syllabus of Microprocessor & Microcontroller

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Microprocessor & Microcontroller	Course Code:	MLTPC 515
Course Category:	Theory; Program Core	Full Marks & Duration:	100 ; (15+2) Weeks
Credit:	3	Contact Hr./Week	L-2: T-1 : P-0

Course Objective:

(Technical Education Division)

Sr. No	Course Objective
1	To study about the architecture of 8085 IC.
2	To study about the architecture of 8086 IC.
3	To develop the knowledge of assembly language programming for 8085 & 8086
4	To study about the interfacings of 8085 & their applications
5	To be familiar with open source microcontroller board using Arduino

Course Content:

Unit	Торіс	Hrs.
1	Introduction to Microprocessors :	3
	Evolution of microprocessors; Specific features of microprocessors; Application of	
	microprocessors	
2	Architecture of Microprocessors :	5
	Explanation of each Functional Block Diagram and Internal Architecture of 8085,8086 – ALU,	
	Registers, Control unit, Clocks, Bus Structure; Address, Data and Control Bus of 8085, 8086;	
	pin Details of 8085, 8086, Introduction to PC range of Microprocessors	
3	Programming of Microprocessors:	15
	Different Addressing modes of 8085,8086; Instruction Cycle of 8085,8086 (including	
	subroutine calls, jumping, comparing, string instructions of 8086); Timing Diagram of different	
	parts of Instruction Cycles; Solving basic problems of Assembly Language Programming using	
4	8085 Trainer Kit and Using any 8086 Assembler or DOS Debug Program.	10
4	Interfacing of Memory and I/O Ports:	10
	Address Space; Memory mapped I/O, I/O mapped I/O; address Decoding and Interfacing of Memory; DMA Description with sequence of steps and control flow, Structure of a generic	
	DMA controller; programmer's model of 8251, Programmer's model of 8255 with its	
	Interfacing; Interrupts – Hardware and Software interrupts, A brief overview of BIOS	
	Interrupts, An introduction to (i) Disk Access Interrupts (ii) CRT/Graphics Interrupts	
5	Single Chip Microcontroller:	6
5	Programming model of 8051: CPU – Address bus – Data bus – Control bus – Register –	Ū
	Internal RAM and ROM – Ports (serial and parallel) – Timers – Interrupts. ADDRESS	
	MODES: Immediate – Register – Direct – Indirect – Indexed. INSTRUCTION TYPES:	
	Arithmetic – Logical – Data Transfer (Internal/External) – Boolean. Control Transfer and	
	Special Function Register	
6	Open source Microcontroller Board:	6
	ARDUINO prototype platform- description- prerequisites-outline of instructions- Introduction-	
	I/O functions-time-display-sensors-secondary integration-communications-Arduino projects	
	Total Teaching Hrs. : (3 hrs. x 15 Weeks)	45
	Assessment : (3hrs. x 2 Weeks)	06
	Total: (3hrs. x 17 Weeks)	51

Course Outcomes (COs):

COs	At end of the course, students would be able to
CO1	Discuss the Architecture of 8085 and 8086 microprocessor
CO2	Develop assembly language programs for simple arithmetic and various real life

(Technical Education Division)

	applications	
CO3	Interface external peripheral devices with 8085 microprocessor	
CO4	Develop the knowledge on single chip micro-controller	
CO5	Concept on open-source microcontroller board	

End Semester Exam:

	End Semester Exam Scheme (Weightage 60 %, $FM - 60$):								
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time	
No				to be Set	be Answered	Marks	Marks	(Hrs.)	
А	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20		
В	Short Answer Type:	-	All	12	10	1 x 10	10		
С	Subjective Type:	C-1		3	Any Five taking at	6 x 5	30		
		C-2		3	least One from				
		C-3		3	each group				
	Total (A+B+C) :						60		

Reference Book:

Sr No	Book	Author	Publisher
1	Microprocessor	R.S.Gaonkar	
2	Microprocessor and Its applications	B.Ram	
3	Microprocessor & Digital System	D.V. Hall	
4	The 8051 Microcontroller & Embeded System using Assembly and C (2 nd Ed.)	Muhammad Ali Mazidi	
5	8051 Microntroller Architecture Programming and application.	M. Mahalakshmi	

----- x -----

Syllabus of Microprocessor & Microcontroller Lab.

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Microprocessor & Microcontroller Lab.	Course Code:	MLTPC 515P
Course Category:	Sessional; Program Core	Full Marks & Duration:	100 ; (15+2) Weeks
Credit:	1	Contact Hr./Week	T-0 : P-2

Course Objective:

(Technical Education Division)

Sr. No	Course Objective		
1	be familiar with the microprocessor & microcontroller		
2	o acquire the basic Microprocessor programming knowledge.		
3	o be familiar with assembly language programming & execution.		
4	o practice open source microcontroller board using Arduino		

Course Details:

Expt. No	Experiment/job	Hrs.			
1	To be familiar with 8085-system development kit				
2	To write, test and debug (if necessary) assembly and machine language programs using instruction set of 8085.				
3	To write programs to execute the following:				
	a) Display digits through seven-segment display using 8255.				
	b) Rolling display-using 8255.				
	c) Display hexadecimal digits using 8279.				
	d) Development of a counter by 8255 and 8253.				
	e) Developments of waveforms using 8255 and 8253.				
	f) Receive on-line data through ADC and display.				
	g) Develop interfacing program using DAC				
4	To practice assembly language programming with 8086				
5	To practice programming with 8051SDK.				
6	To practice open source microcontroller board using Arduino				
	Total Teaching Hrs. : (2 hrs. x 15 Weeks)	30			
	Assessment : (2hrs. x 2 Weeks)	04			
	Total: (2hrs. x 17 Weeks)	34			

Course Outcomes (COs):

COs	At end of the course, students would be able to
CO1	Develop common assembly language programmes using 8085 and 8086 microprocessor kit
CO2	Develop application based program with hardware interface using 8085 kit
CO3	Develop basic programmes of microcontroller 8051
CO4	Develop basic knowledge on open source microcontroller board application

----- X -----

Elective-II (Any one course to be selected)

Sl	Course Code	Program Elective-II: Course Name	Credit	Semester	Full Marks
1	MLTPE 521	Artificial Organs & Rehabilitation	2	5^{th}	100
		Engineering			
2	MLTPE 522	Biotechnology	2	5 th	100

Code System:

Program (i.e. MLT) _Course Category (i.e. PE) _Semester (i.e. 5) _ Elective Course No (i.e 2)_Course No (i.e. 1, 2,)

(Technical Education Division)

Syllabus of Artificial Organ & Rehabilitation Engineering

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Artificial Organs & Rehabilitation	Course Code:	MLTPE 521
	Engineering		
Course Category:	Theory; Program Elective-II	Full Marks & Duration:	100; (15+2) Weeks
Credit:	2	Contact Hr./Week	L-2: T-0

Course Objective:

Sr. No	Course Objective
1	To introduce artificial organs and their application.
2	To acquire the knowledge of the biomaterial used for artificial organ and rehabilitation engineering.
3	To know the working of artificial organs.
4	To be familiar with the rehabilitation engineering.

Course Details:

Unit	Торіс	Hrs.
1	Introduction: Introduction to artificial organs and prostheses, Biomaterials used, Tissue	6
	response- Inflammation, rejection, correction, Rheological properties of blood,	
2	Artificial Kidney: Function of kidney, Brief of kidney filtration, Principle of hemodialysis,	5
	Artificial waste removal, Dialyzer, Overview of different types of hemodialysers – plate, coil,	
	hollow fibre type.	
3	Artificial Heart-lung Machine: Function of heart & lungs, Operation of Artificial heart-lung	3
	device, Oxygenator,	
4	Artificial Pancreas: Basic principle of artificial pancreas, Introduction to artificial blood	3
5	Audiometry: Hearing mechanism, Basic principle of hearing aids,	3
6	Rehabilitation Engineering: Impairments, disabilities, handicaps, aids for blind, Rehabs for	10
	locomotion, Gait study, Artificial limbs and hand, prosthetic heart valves, Basic principle of	
	Myoelectric controlled hand and arm prostheses, Dental Prostheses	
Total Teaching Hrs. : (2 hrs. x 15 Weeks)		
Assessment : (2 hrs. x 2 Weeks)		
	Total: (2 hrs. x 17 Weeks)	34

Course Outcomes (COs):

COs	At end of the course, students would be able to		
CO1	tate the material used for artificial organs & their tissue response and Rheological properties of		
	blood		
CO2	Explain the functions of artificial kidney, heart lung machine, artificial Pancreas.		
CO3	Describe hearing mechanism and working principle of hearing aids		
CO4	Demonstrate gait study, artificial limb, heart valve and dental prostheses.		

End Semester Exam:

(Technical Education Division)

	Ene	d Semes	ter Exan	n Scheme (Weig	htage 60 %, FM – 6	0):		
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time
No		_		to be Set	be Answered	Marks	Marks	(Hrs.)
A	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20	
В	Short Answer Type:	-	All	12	10	1 x 10	10	
С	Subjective Type:	C-1	1, 2	3	Any Five taking at	6 x 5	30	
		C-2	3, 4	3	least One from			
		C-3	5,6	3	each group			
	Total (A+B+C) :						60	

Reference Book:

Sr No	Book	Author	Publisher
1	Biomedical Instrumentation	R. S. Khandpur	Tata Mc
2	Biomaterial	Sujata Vat	
3	Material Science	Calister	
4	The hand book of Biomedical Engineering	Josep D. Bronzino	CRC Press
5	Rehabilitation Engineering	Robbinson C. J.	CRC press
6	Rehabilitation Engineering	Ballabio Betal	IOS press

Syllabus of Biotechnology

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Biotechnology	Course Code:	MLTPE 522
Course Category:	Theory; Program Elective-II	Full Marks & Duration:	100; (15+2) Weeks
Credit:	2	Contact Hr./Week	L-2: T-0

Course Objective:

Sr. No	Course Objective	
1	Introduce to biotechnology.	
2	To know the basic principle of biotechnology.	
3	To be familiar with Tools and process of recombinant DNA technology.	
4	To be familiar with applications of biotechnology	

(Technical Education Division)

Unit	Торіс	Hrs.
1	Molecular Biology: Introduction to Biotechnology, Structure, Function and Replication of	4
	DNA, Gene expression, the structure and function of the gene, Structure, function and Biochemical properties of RNA	
2	Principles of Biotechnology: Scope of biotechnology, Principles of bio-technology, introduction to Genetic engineering & Bioprocess engineering	4
3	Tools of Genetic Engineering: Basic tools, Restriction enzyme, Cloning vectors & its features, Competent host (for Transformation with Recombinant DNA), micro-injection, biolistic.	5
4	Process of Recombinant DNA Technology: Isolation of the genetic material (DNA), Cutting of DNA at Specific location, Amplification of Gene of interest using PCR, Insertion of Recombinant DNA into host cell/organism, Obtaining the foreign Gene product, Bioreactor, Downstream processing.	6
5	Application of Biotechnology in Agriculture: Critical research area, overview of agro- chemical based agriculture, Organic agriculture, Genetically engineered crop-based agriculture, Genetically modified organisms (GMO), Bt Cotton, Pest Resistant Plant.	3
6	Application of Biotechnology in Medicine: Introduction, Genetically engineered insulin, Gene therapy, Molecular Diagnosis,	5
7	Transgenic Animals: Introduction, Purpose of transgenic animal – Normal physiology & development, Study of disease, Biological product, Vaccine safety, Chemical safety testing, Ethical issues.	3
	Total Teaching Hrs. : (2 hrs. x 15 Weeks)	30
	Assessment : (2 hrs. x 2 Weeks)	04
	Total: (2 hrs. x 17 Weeks)	34

Course Outcomes (COs):

COs	At end of the course, students would be able to
CO1	State the molecular biology aspect
CO2	Explain the principle of biotechnology and tools of recombinant DNA technology
CO3	Demonstrate the process of recombinant DNA technology
CO4	State the application of biotechnology in agriculture, medicine etc.

End Semester Exam:

	End	d Semes	ter Exan	n Scheme (Weig	htage 60 %, FM – 6	0):		
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time
No		_		to be Set	be Answered	Marks	Marks	(Hrs.)
A	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20	
В	Short Answer Type:	-	All	12	10	1 x 10	10	
С	Subjective Type:	C-1	1	3	Any Five taking at	6 x 5	30	
		C-2	2, 3, 4	3	least One from			
		C-3	5, 6, 7	3	each group			
	Total (A+B+C) :						60	

Reference Book:

(Technical Education Division)

Sr No	Book	Author	Publisher
1	Biotechnology	R. C. Dubey	S. Chand
2	Molecular biotechnology	Bernard R. Glick	
3	Biotechnology	David P. Clark	
4	Biotechnology	U. Satyanarayana	
5	Principles of Tissue Engineering	Robert P Lanza, Robert Langer &	Academic Press
		William L. chick	
6	Tissue Engineering	B. Palsson, J. A. Hubbel, R.	CRC- Taylor & Francis
		Plonsey	

----- X -----

Elective-III (Any one course to be selected)

Sl	Course Code	Program Elective-III: Course Name	Credit	Semester	Full Marks
1	MLTPE 531	Hospital Engineering & Management	2	5^{th}	100
2	MLTPE 532	Medical Image Processing	2	5^{th}	100

Code System:

Program (i.e. MLT) _Course Category (i.e. PE) _Semester (i.e. 5) _ Elective Course No (i.e. 3)_Course No (i.e. 1, 2,)

Syllabus of Hospital Engineering & Management

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Hospital Engineering & Management	Course Code:	MLTPE 531
Course Category:	Theory; Program Elective-III	Full Marks & Duration:	100; (15+2) Weeks
Credit:	2	Contact Hr./Week	L-2: T-0

Course Objective:

Sr. No	Course Objective
1	To acquire the basic knowledge of Different types of hospital & hospital services
2	To be familiar with hospital engineering & role of Biomedical Engineer in hospital,
3	To know biomedical waste management system.
4	To be familiar with the hazards in hospital and protection system for safety.
5	To acquire the concept of quality management in hospital.

	Unit	Торіс	Hrs.
--	------	-------	------

(Technical Education Division)

Hospital services - IPD, OPD, Emergency, Pharmacy, Diagnostic, blood bank, Departments of a hospital, Location, Environment of hospital2Hospital Engineering: Department of Bio-Medical Engineering, Role of a Biomedical Engineer, Procurement & maintenance of medical equipment, Medical gas and its necessity, Centralised Gas supply system, color code for gas conduit pipes. General maintenances- electrical, civil, plumbing, carpentry, Principle of production of liquid oxygen, Oxygen plant.73Hospital Waste Management: Different hospital waste, Biomedical waste, categories of biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste74Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.6	1				
a hospital, Location, Environment of hospital 2 Hospital Engineering: Department of Bio-Medical Engineering, Role of a Biomedical Engineer, Procurement & maintenance of medical equipment, Medical gas and its necessity, Centralised Gas supply system, color code for gas conduit pipes. General maintenances-electrical, civil, plumbing, carpentry, Principle of production of liquid oxygen, Oxygen plant. 3 Hospital Waste Management: Different hospital waste, Biomedical waste, categories of biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. 4 Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.	1		5		
 Hospital Engineering: Department of Bio-Medical Engineering, Role of a Biomedical Figure Procurement & maintenance of medical equipment, Medical gas and its necessity, Centralised Gas supply system, color code for gas conduit pipes. General maintenances-electrical, civil, plumbing, carpentry, Principle of production of liquid oxygen, Oxygen plant. Hospital Waste Management: Different hospital waste, Biomedical waste, categories of biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital. 	1				
 ² Hospital Engineering: Department of Dis medical Engineering, note of a Dismeardar Engineer, Procurement & maintenance of medical equipment, Medical gas and its necessity, Centralised Gas supply system, color code for gas conduit pipes. General maintenances-electrical, civil, plumbing, carpentry, Principle of production of liquid oxygen, Oxygen plant. ³ Hospital Waste Management: Different hospital waste, Biomedical waste, categories of biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. ⁴ Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital. 		a hospital, Location, Environment of hospital			
Centralised Gas supply system, color code for gas conduit pipes. General maintenances- electrical, civil, plumbing, carpentry, Principle of production of liquid oxygen, Oxygen plant. 3 Hospital Waste Management: Different hospital waste, Biomedical waste, categories of biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. 4 Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.	2	Hospital Engineering: Department of Bio-Medical Engineering, Role of a Biomedical	7		
electrical, civil, plumbing, carpentry, Principle of production of liquid oxygen, Oxygen plant. 3 Hospital Waste Management: Different hospital waste, Biomedical waste, categories of biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. 4 Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.		Engineer, Procurement & maintenance of medical equipment, Medical gas and its necessity,			
electrical, civil, plumbing, carpentry, Principle of production of liquid oxygen, Oxygen plant. 3 Hospital Waste Management: Different hospital waste, Biomedical waste, categories of biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. 4 Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.		Centralised Gas supply system, color code for gas conduit pipes. General maintenances-			
 biomedical waste, color code for biomedical waste, WHO classification of biomedical waste, Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital. 					
Purpose of biomedical waste management, Collection and Disposal system of different categories of Biomedical waste. 4 4 Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital. 6	3	Hospital Waste Management: Different hospital waste, Biomedical waste, categories of	7		
categories of Biomedical waste. 4 Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.		biomedical waste, color code for biomedical waste, WHO classification of biomedical waste,			
categories of Biomedical waste. 4 Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.		Purpose of biomedical waste management, Collection and Disposal system of different			
prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in hospital.		categories of Biomedical waste.			
hospital.	4	Safety: Sources of radiation hazard, Protection of radiation hazard, Cause of fire, Fire	6		
hospital.		prevention, Fire protection system in hospital, Fire fighting equipment, electrical safety in			
5 Quality Control: Definition of quality, Quality control, quality assurance, quality improve, 5	5	Quality Control: Definition of quality, Quality control, quality assurance, quality improve,	5		
concept of TQM, Importance of ISO certificate		concept of TQM, Importance of ISO certificate			
Total Teaching Hrs. : (2 hrs. x 15 Weeks)30					
Assessment : (2 hrs. x 2 Weeks) 04					
Total: (2 hrs. x 17 Weeks) 34					

Course Outcomes (Cos):

Cos	At end of the course, students would be able to
CO1	State the different types of hospital and aspect of hospital services.
CO2	Explain function biomedical engineering department in hospital, centralize gas supply system in
	hospital, production of oxygen.
CO3	Describe biomedical waste collection and disposal system.
CO4	Demonstrate the safety aspect in hospital and quality assurance.

End Semester Exam:

	En	d Semes	ter Exan	n Scheme (Weig	htage 60 %, FM – 6	0):		
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time
No				to be Set	be Answered	Marks	Marks	(Hrs.)
А	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20	
В	Short Answer Type:	-	All	12	10	1 x 10	10	
С	Subjective Type:	C-1	1, 2	3	Any Five taking at	6 x 5	30	
		C-2	3	3	least One from			
		C-3	4,5	3	each group			
	Total (A+B+C) :						60	

Reference Book:

Sr No	Book	Author	Publisher
-------	------	--------	-----------

(Technical Education Division)

1	Hospital Management Engineering	Harold E.Smalley	HPI
2	Clinical Engineering	C. A. Caccras	
3	Hospital & Healthcare Facilities	L.C. Redstone	
4	Industrial Management (Vol-1)	L.C. Jhamb	EHP

----- X -----

Syllabus of Medical Image Processing

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Medical Image Processing	Course Code:	MLTPE 532
Course Category:	Theory; Program Elective-III	Full Marks & Duration:	100; (15+2) Weeks
Credit:	2	Contact Hr./Week	L-2: T-0

Course Objective:

Sr. No	Course Objective
1	To be familiar with different medical imaging modalities.
2	To acquire the basic knowledge of digital image and fundamental of digital image processing
3	To be familiar with the image acquisition, image quality improvement, display

Unit	Торіс	Hrs.
1	Principle of Medical Images: Different medical imaging modalities, Introduction to	6
	Radiography, Principle of x-ray image, Tomography, Principle of CT, CT image formation,	
	Principle of Ultrasound image, Modes of USG, Principle of NMR/MRI, Image acquisition,	
	T1, T2.	
2	Introduction to Digital Image: Concept of Image, Digital image, Pixel, Dimension of Image,	2
	Types of digital image – Binary image, Gray scale image, RGB image, RGBA, Image matrix,	
	Sources of digital image. Basic principle of digital image formation, Image formation in	
	human eye, Image brightness, contrast.	
3	Fundamental of Digital Image Processing: Concept of digital Image processing, Types of	6
	digital image processing, Image acquisition, storage, processing, display of Image, Different	
	image sensor. Component of digital image processing system. Fundamental steps of digital	
	image processing- Image Acquisition, Image Enhancement, Image Restoration, Wavelets and	
	Multi-resolution Processing, Compression, Morphological Processing, Representation and	
	Description, Recognition, Knowledge Base.	
4	Sampling and Quantization: Image Sensing and Acquisition, Image Acquisition using a	4
	Sensor Arrays, Image sampling and Quantization.	
5	Image Enhancement: Image enhancement, approaches. Spatial domain methods, Overview	8
	of Basic Gray level transformations, Histogram processing, Histogram equalization, Image	
	enhancement by frequency domain- Blurring/Noise Reduction, Low Pass Filter (LPF), Image	

(Technical Education Division)

	sharpening using frequency domain filter, High-Pass Filter (HPF)			
6	6 Overview of Image Presentation & Recognition: Introduction of Image Degradation /			
	Restoration Process. Techniques to reduce the noise effect. Image Segmentation, edge			
	detection, Basic Concept of Seed Points with example. Overview of image compression,			
	presentation & recognition.			
	Total Teaching Hrs. : (2 hrs. x 15 Weeks)	30		
Assessment : (2 hrs. x 2 Weeks)		04		
	Total: (2 hrs. x 17 Weeks)	34		

Course Outcomes (Cos):

Cos	At end of the course, students would be able to
CO1	State the different medical imaging modalities and their principle of medical image formation.
CO2	Explain fundamental of digital image processing steps, image acquisition, image sampling & quantization.
CO3	Describe digital image enhancement technique
CO4	Describe image segmentation, edge detection technique

End Semester Exam:

	End Semester Exam Scheme (Weightage 60 %, $FM - 60$):							
Sr	Question Type	Group	Unit	No of question	No of question to	Allotted	Total	Time
No				to be Set	be Answered	Marks	Marks	(Hrs.)
A	Objective Type: MCQ/ Fill-in-the blanks	-	All	25	20	1 x 20	20	
В	Short Answer Type:	-	All	12	10	1 x 10	10	
С	Subjective Type:	C-1	1, 2	3	Any Five taking at	6 x 5	30	
		C-2	3, 4	3	least One from			
		C-3	5,6	3	each group			
	Total (A+B+C) :						60	

Reference Book:

Sr No	Book	Author	Publisher
1	Digital Image Processing	R. C. Gonsalez, R.E. Woods,	Dorling Kindersley Pvt Ltd
		Steven L. Eddins	
2	Fundamental of Image Processing	Anil Kr. Jain	Prentice Hall
3	Digital Image Processing	.William K. Pratt	John Wiley, NJ
4	Medical Imaging systems	Albert Macouski	Prentice Hall, New Jersey

----- X -----

Major Project

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Major Project	Course Code:	* PR 502
Course Category:	Sessional; Project Work	Full Marks & Duration:	100; (15+) Weeks
Credit:	-	Contact Hr./Week	L-0: T-0: P-2

Course Objective:

Sr. No	Course Objective
1	To build up the creativity & innovation.
2	To enhance the decision making capability
3	To face the problems and solution
4	To allow to do a job as their choice/interest.

Course Details:

Unit	Торіс	Hrs.
1.	Project work on Bio-medical instrumentation/MLT/ Electronics device (hardware/software)	
	may be done by individual or in group under the project guide.	
	1. Selection of Project work	
	2. Preparation of Synopsis	
	3. Job for project work.	
	Total Teaching Hrs. : (2 hrs. x 15 Weeks)	30
	Assessment : ()	-
	Total: (2 hrs. x 15 Weeks)	30

Internship-II

Course Introduction:

Program:	Medical Laboratory Technology	Semester:	5 th
Course Title:	Internship-II	Course Code:	* I 502
Course Category:	Sessional; Internship	Full Marks & Duration:	100; (15+2) Weeks
Credit:	1	Contact Hr./Week	L-0: T-0: P-0

Course Objective:

Sr. No	Course Objective	
1	To build up the practical experience.	
2	To be familiar with the hands on training in Institute/industry.	
3	Entrepreneurship Development.	

(Technical Education Division)

Course Details:

Unit	Торіс	Hrs.
1.	Note: Internship-II	
	I: Internship may be duration of 2-4 weeks at Hospital/Diagnostic Centre/Industry.	
	1) 60% (Internal) will be assessed by the Institute, based on Internship Report, Assignment and Viva-	
	Voce.	
	2) 40% marks (External), will be assessed during internship by the concern authority of the Institute/	
	hospital/ Industry etc. where students will go for their Internship based on performance, attendance,	
	report etc.	

Evaluation Scheme of Theory Courses:

Examination Scheme										
Course	Interna	l Assessment (40 Ma	rks)	External Assessment (60 Marks)	Full Marks					
	Mid Sem.Test	Quiz / Assignment	Attendance	End Semester Exam (Council)						
Theory	20	10	10	60	100					
Pass Marks: Students have to obtain at least 40% marks (pass marks) in both Internal assessment										
and External separately.										

Evaluation Scheme of Sessional Courses:

Examination Scheme											
	Continuous Internal Assessment					External Assessment		Full Marks			
Course	(60)					(40)		(100)			
	Performance			Viva-	Attendan	Assignment	Viva-Voce				
	(30)			Voce (20)	ce (10)	(On day of	(Before Board of				
	Job/	Assign	Lab	VV	ATT	External	Examiners with				
	Expt.	ment	report			sessional)	Lab Report)				
Sessional	20	5	5	20	10	20	20	100			
Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both continuous assessment											
and end semester Assessment separately.											

Note: Course Outcomes may be fixed as per subject teacher of the Institute.